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ABSTRACT 

 
A real-time subband adaptive noise cancellation system on an 
ultra low-power miniature DSP system is implemented. The 
system is targeted at personal communication devices where the 
speaker may be in a noisy environment. The system is 
implemented on an ultra low-power DSP system that 
incorporates a DSP core and an oversampled WOLA filterbank. 
Pre-emphasis filters are used to increase the convergence rate of 
a leaky LMS algorithm in the oversampled subband 
implementation. System performance is also improved relative 
to a fullband implementation due to benefits arising from using 
subband adaptive filters instead of fullband filters. A 10 dB 
reduction of noise power is achieved in tests using various noise 
conditions. The entire DSP system consumes 2.1 mW and can 
be realized in a package size of 6.5 x 3.5 x 2.5 mm. 

1. INTRODUCTION 

The objective of this research is to implement a subband 
adaptive noise cancellation system on an ultra low-power, small 
size, and low-cost platform. The system is targeted for 
telecommunication (e.g., headsets or mobile phones) or mobile 
speech recognition applications, where the user is talking in the 
presence of interfering noise. A robust system should provide 
significant noise cancellation, fast algorithmic convergence in 
colored noises, short group delay, and minimal introduction of 
artifacts into the speech signal. Furthermore, it should have low 
computational cost and complexity, low memory usage, low 
power requirements, and small physical size. 

It is well known that a noise cancellation system can be 
implemented with a fullband adaptive filter working on the 
entire frequency band of interest [1]. The Least Mean-Square 
(LMS) algorithm and its variants are often used to adapt the 
fullband filter with relatively low computation complexity and 
good performance. However, the fullband LMS solution suffers 
from significantly degraded performance with colored 
interfering signals due to large eigenvalue spread and slow 
convergence [2]. Moreover, as the length of the LMS filter is 
increased, the convergence rate of the LMS algorithm decreases 
and computational requirements increase. This can be a 
problem in applications, such as acoustic echo cancellation, that 
demand long adaptive filters to model the return path response 
and delay. These issues are especially important in portable 
applications, where processing power must be conserved. 

As a result, subband adaptive filters (SAF) become a viable 
option for many adaptive systems. The SAF approach uses a 
filterbank to split the fullband signal input into a number of 
frequency bands, each serving as input to an adaptive filter. The 

subband decomposition greatly reduces the update rate and the 
length of the adaptive filters resulting in a much lower 
computational complexity. Further, subband signal are often 
decimated in SAF systems. This leads to a whitening of the 
input signals and an improved convergence behavior [3]. If 
critical sampling is employed, the presence of aliasing 
distortions requires the use of adaptive cross-filters between 
adjacent subbands or gap filterbanks [3,4]. However, systems 
with cross-filters generally converge slower and have higher 
computational cost, while gap filterbanks produce significant 
signal distortion. Oversampled SAF systems offer a simplified 
structure that without employing cross-filters or gap filterbanks, 
reduce the alias level in subbands. To reduce the computation 
cost, often a close to one non-integer decimation ratio is used 
[5]. 

In this research we propose a SAF system based on generalized 
DFT (GDFT) filterbanks. The filterbank is a highly 
oversampled one (oversampling by a factor of 2 or 4). Due to 
the ease of implementation, low-group delay and other 
application constraints (explained in Section 3), we chose a 
higher oversampling ratio than those typically proposed in the 
literature. The convergence behavior due to the high 
oversampling rate is analyzed and properly addressed. An 
LMS-based version of the proposed SAF system is 
implemented on a DSP system that includes an oversampled 
filterbank. The DSP system [6,7] has a configurable 
oversampling rate of 2 or 4. The added computational cost due 
to sampling the subband signals at a frequency higher than the 
critical sampling frequency is compensated by the efficiency of 
the hardware architecture, which has a filterbank coprocessor 
dedicated to performing subband decomposition of the input 
signals. 

 In the following sections, we first present a description of this 
DSP architecture. We then describe the adaptive noise canceller 
structure. Finally, a conclusion of the research and the future 
work is presented. 

2. THE DSP SYSTEM 

Figure 1 shows a block diagram of the DSP system [6,7]. The 
DSP portion consists of three major components: a weighted 
overlap-add (WOLA) filterbank coprocessor, a 16-bit block-
floating point DSP core, and an input-output processor (IOP). 
The DSP core, WOLA coprocessor, and IOP run in parallel and 
communicate through shared memory. The parallel operation of 
the system allows for the implementation of complex signal 
processing algorithms in low-resource environments with low 
system clock rates. The system is especially efficient for 



subband processing since the configurable WOLA coprocessor 
splits the fullband input signals into subbands, leaving the core 
free to do the adaptive processing on the subband signals. 

The core has access to two 4-kword data memory spaces, and 
another 12-kword memory space used for both program and 
data. The core provides 1 MIPS/MHz operation and has a 
maximum clock rate of 4 MHz at 1 volt. At 1.8 volts, 30 MHz 
operation is also possible. The system operates on 1 volt (i.e., 
from a single battery). With a system clock rate of 1.28 MHz, it 
consumes less than 1 mW of power.  

The system is implemented on two ASICs.  A separate off-the-
shelf E2PROM provides the non-volatile storage. The chipset 
can be packaged into a 6.5 x 3.5 x 2.5 mm hybrid circuit. 

The system is clocked at a rate of 5.12 MHz for this application. 
The sampling rate is 16 kHz. Power consumption is 2.1 mW. 
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Figure 1: The DSP system block diagram 

3.  SUBBAND ADAPTIVE NOISE 
CANCELLATION 

The SAF system is implemented on DSP system described in 
Section 2 The adaptive noise cancellation algorithm uses a 16-
band stereo configuration of the WOLA filterbank, with an 
oversampling factor of 2 or 4. For many applications the low 
group delay requirement does not allow long analysis time-
windows. Consequently, high oversampling factors are used to 
minimize the aliasing distortion found in systems with critical 
sampling or low oversampling. This results in near-orthogonal 
subbands, where energy leakage between adjacent bands is 
small. As a result, prototype filter design constraints become 
less stringent. As discussed in [6,7], wide gain adjustment of the 
subband signals leads to considerable distortion in filterbanks 
with low oversampling ratios. However, it is quite feasible for 
the WOLA filterbank to apply wide gain adjustment without 
generating audible distortions. 

Figure 2 shows a block diagram of the subband adaptive noise 
canceller. The system has two inputs: one for the primary signal 
(voice from speaker with interfering noise), and one for the 
reference signal (noise only). The signals are received from 
microphones that are physically placed for good separation of 
the signals, but not so far apart as to make the transfer function 
between microphones too complex to be modeled by the 
adaptive system. For a headset with a boom, the speech 
microphone is placed close to the speaker’s mouth on the inside 
of the boom and the reference microphone is placed on the 
opposite side of the boom facing away from the speaker. Each 
input signal is passed through the analysis filterbank and split 
into uniform subbands. The analysis filterbank efficiently 

decimates the subband signals. The subband processing blocks 
cancel the noise in the output signal by using a variant of the 
LMS algorithm that is described in Section 3.2. The subband 
processing blocks are shown in detail in Figure 3. 
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Figure 2: Subband adaptive noise canceller 
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Figure 3: Subband processing block for adaptive noise 

canceller 

3.1. Pre-emphasis Filters 

The oversampled input signals received by the subband 
processing blocks are no longer white in spectrum. In fact, for 
oversampling factors of 2 and 4, their bandwidth will be limited 
to π/2 and π/4 respectively. As a result, one would expect a 
slow convergence rate due to eigenvalue spread problem [2]. 
On the other hand, while the oversampled subband signals are 
not white, their spectra are colored in a predicable way and can 
therefore be modified by fixed filters to “whiten” them in order 
to increase the convergence rate. Thus, the inherent benefit of 
decreased spectral dynamics resulting from subband 
decomposition is not lost due to oversampling. 

Figure 4 shows a simplified representation of the subband 
spectra corresponding to white noise input into the filterbank, 
for a 4-times oversampled configuration. The dashed line shows 
the spectrum without pre-emphasis. As shown, nearly all the 
signal power is in the lower quarter of the spectrum. The signal 
power present in the upper three quarters of the spectrum is 
decided by the frequency response of the filterbank’s prototype 
low-pass analysis filter. 

We employ a pre-emphasis filter for each subband to amplify 
the low-level signal components in the high three quarters of 
the spectrum to flatten the spectrum, thereby reducing the 



signal’s autocorrelation matrix eigenvalue spread, and 
increasing convergence rate. Figure 5 shows the frequency 
response of a typical pre-emphasis filter employed in the 
system. The solid line in Figure 4 corresponds to the spectrum 
of the subband signal after pre-emphasis. The emphasized 
subband signals are used only for improving the convergence 
characteristics of the adaptive filters. As shown in Figure 3, in 
each subband, the adaptive filter coefficients are copied to a 
mirror filter that processes the non-emphasized version of the 
signal to obtain the noise-cancelled signal for synthesis. 
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Figure 4: Simplified subband spectrum before pre-emphasis 

(dashed line) and after pre-emphasis (solid line) 
 
Figure 6 illustrates the change in convergence using a long 
sequence of white noise input samples into the 16-band WOLA 
filterbank using an oversampling factor of 4. MATLAB 
simulations are run with a known finite impulse response 
system in place to simulate the transfer function between two 
microphones. The LMS filter mean-squared error (MSE) is the 
averaged squared difference between the 5 adaptive filter 
coefficients and the known optimum solution. This value is 
normalized such that the initial zero values of the adaptive 
coefficients corresponds to a MSE of 0 dB. The normalized 
filter MSE is then averaged across the 16 subbands. Note that 
Figure 6 merely illustrates the difference in average MSE for 
the finite input sequence; both systems will ultimately converge 
to the same steady state solution. 
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Figure 5: Pre-emphasis filter response 

3.2. Subband Adaptation Algorithm 
The filter in the kth subband, wk, is adapted according to 
equation (1), where n is the time index, µk is the LMS step-size 
parameter, ek is the error signal, L is the adaptive filter length, 
xk is a vector containing the last L complex samples of 
emphasized subband reference signal Xk, 2

kσ  is an estimate of 
the power of Xk, and ε is a small constant used to avoid division 
by zero. The normalized and “leaky” variant of the complex 
LMS algorithm is chosen to ensure stability and convergence to 
a unique solution [8]. 
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Figure 6: Effect of pre-emphasis filter on adaptive filter 
convergence 
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It is possible to vary the subband LMS parameters such as filter 
length and LMS step-size parameter µ, independent of 
parameters of adjacent bands since the bands are almost 
orthogonal. As described below, we have implemented a system 
with varying values of µk, constant leakage factor γ across all 
bands, and 5 complex coefficients for each adaptive filter. 

The values for µk are chosen such that peak noise cancellation 
in slowly varying noise is achieved within approximately 5 
seconds. Faster convergence is possible by increasing µk, but it 
comes at the cost of increased artifacts in the enhanced speech. 
In bands beyond 4 kHz, the filters are more aggressively 
adapted using increasing values for µk since the higher bands 
contain less speech energy and therefore there is less distortion 
introduced by quickly adapting filters. 

The leakage factor γ effectively adds white noise to the input 
signal and ensures convergence to a unique solution [8]. It also 
allows the filters to re-initialize themselves by slowly leaking to 
zero in the absence of input Xk. γ is chosen such that the factor 
(1 – γ µk) is very close to 1. This keeps the filter coefficient bias 
created by using leaky LMS to an acceptable value, while still 
adding some whitening effect. 

The filter length is chosen as a compromise between 
computational requirements and the system’s ability to model 
the physical system between primary and reference 
microphones. Filters that are too long will use up all available 
processing power and will lead to slow convergence. Filters that 
are too short will result in a truncated model of the system 
between microphones, and therefore limit the degree of noise 
cancellation. Since the adaptive filters in our system operate in 
a decimated domain and are comprised of complex coefficients, 
they combine to model a fullband system with a comparably 
more complex response. The 5 complex coefficients per 
adaptive filter provide adequate modeling capability, while 
conserving processing resources. 

The existence of multiple filters allows the filter updating to be 
interleaved across successive time slots for efficiency. For 
example, grouping the subbands into 2 groups of 8, then 
updating alternate groups at every time slot reduces the 
computational requirements per time slot by a factor of 2. The 



power estimate 2
kσ  is calculated using a first-order IIR 

smoothing filter with a time constant of approximately 1 ms. 

The constant gain factors gk (see Figure 3) are used to scale the 
noise-cancelled signal before it reaches the subband output and 
subsequently enters the synthesis stage. We have found that the 
undesirable leakage of the speech signal into the reference 
signal in practical systems causes some inadvertent cancellation 
of speech, particularly in the low frequencies. The static gain 
factors are set to compensate for this mild low frequency loss. 
Also, in real-time hardware implementation (reported in Section 
4), these gains can be used for microphone equalization. 

An optional voice activity detector (VAD) freezes the 
adaptation of the filters when speech is present. The VAD is 
particularly useful in physical configurations where 
microphones are placed such that the speech signal easily leaks 
into the reference signal. The contamination of the reference 
signal hinders convergence of the filters. This is avoided by 
allowing the filters to adapt only when the VAD has detected a 
pause in speech. The VAD calculates the power in a low band-
group and a high band-group. It tracks the changes in the ratio 
of these powers in order to detect the presence of speech in the 
primary signal. It is designed to have a bias towards over-
detection (false alarms) rather than under-detection (missed 
speech). A hangover counter is used to prevent the 
misclassification of trailing portions of speech as noise or 
silence, thereby improving the reliability of pause detection. 
Testing shows that activation of the VAD slows down the 
convergence but does not affect the degree of noise cancellation 
achieved after convergence. 

4.  PERFORMANCE EVALUATION 

Off-line evaluation tests have been completed for various types 
of noise (white, pink, car, airplane, babble, and similar noises) 
in the presence of speech. Table 1 shows the results of a 
comparison of simulated fullband (128-coefficient FIR) and 
subband (16 x 8-coeffecient FIR) systems using the same input 
length. The primary input has a 0 dB signal-to-noise ratio 
(SNR) with no speech leakage to the reference input. The 
algorithm parameters (filter length, µk and γ) are chosen for 
each system such that SNR improvement in white noise is 
similar. The results illustrate how the subband implementation 
performs consistently for various noise conditions, while the 
fullband implementation does not. As evident from the table, 
the proposed SAF has a superior performance for both non-
stationary (like babble noise) and colored noises (like pink 
noise) due to the whitening effect of the SAF system and a 
faster convergence. Informal listening shows very little audible 
distortion of speech. 

A real-time version of the proposed SAF system is implemented 
on the DSP system described in Section 2.  The preliminary 
results using a variety of double-microphone boom-style 
headsets show an average improvement (for different types of 
noise with input SNR in 0-5 dB range) in SNR of 10 dB on a 
real system. This is promising considering the effects of 
implementation on a 16-bit block-floating-point system using a 
real headset that permits leakage of speech into the reference 
microphone. 

Table 1: Comparison of simulation results for fullband and 
subband systems 

 SNR improvement (dB) 
 Fullband system Subband system 
White noise 25.5 25.7 
Pink noise 18.7 25.3 
Airplane noise 17.3 23.0 
Babble noise 16.4 25.2 
Traffic noise 17.4 25.2 
Car noise 20.7 25.6 

5. CONCLUSIONS AND FUTURE WORK 

An SAF noise cancellation system was developed for a highly 
oversampled filterbank. The system was implemented on an 
ultra low-resource platform. To improve the convergence rate, 
we proposed and implemented pre-emphasis filters to improve 
the performance of the adaptive subband-LMS algorithm. In 
real-life environments, the noise cancellation system delivers 
approximately 10 dB reduction of noise power with little 
distortion of speech, while requiring modest resources in terms 
of space and power. It performs well in colored noise and 
shows faster convergence than a fullband implementation. No 
other system known to the authors delivers such performance 
with such small size and low power consumption.  

Future work will include a complete evaluation of our real-time 
system and investigation of optimal design criteria for the pre-
emphasis filters, as well as alternate means of subband signal 
whitening. Also, more research can be done to explore the 
usage of other adaptation strategies on the DSP system. 
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