
Abstract
The availabili ty of deep Sub-micron technology
opens the door to advanced noise reduction algo-
rithms specifically targeted for ultra low-power port-
able applications like hearing aids. These applications
are extremely constrained by small physical size and
extremely low power consumption requirements. The
Weighted Overlap-Add (WOLA) filterbank discussed
here provides a powerful platform for the implemen-
tation of noise reduction algorithms.

Introduction
This paper presents two extremely low-power noise
reduction systems suitable for the demanding appli-
cation of hearing aids and for industrial applications
where extremely low power and extremely small size
are required (less than 1mA at 1V and 17 square
mm).  Key to successful implementation in these
areas is a tight fit between hardware architecture and
the algorithms.

Most signal processing algorithms can be cast effi-
ciently into a frequency-domain-processing frame-
work. Since noise and speech are time varying fre-
quency dependent quantities, noise reduction natu-
rally fits in this framework. It is rare that noise re-
duction alone is the end result of signal processing.
One typical application is processing for hearing loss
(hearing aids). Other applications that work effi-
ciently in conjunction with noise reduction include
dynamic range compression, sub-band coding, direc-
tional processing, voice activity detection and echo
cancellation. For these types of real-time audio signal
processing applications, the filtering requirements are
strict:  i) low group delay, ii ) high degree of adjusta-
bili ty, and iii ) high fideli ty. A frequency domain ap-
proach is an efficient method of meeting these con-
straints while delivering low power and flexibili ty.

This paper describes two types of noise reduction
algorithms: i) a robust extremely low-power spectral
subtraction noise reduction algorithm and ii ) a low-
delay noise attenuation algorithm more suited for
digital hearing aid applications. Both algorithms are
tightly coupled with a highly optimized, extremely
low-power WOLA (Weighted Overlap-Add) filter-
bank [1].

The incoming speech is digitized at a sampling rate
of 16kHz, presented to the analysis filterbank in
overlapping blocks and split i nto a programmable
number of uniform bands (frequency domain). After
processing in the frequency domain, the frequency
bands are combined together in the synthesis filter-
bank to produce time-domain-overlapping blocks.
These blocks are weighted and summed together to
produce the processed outgoing speech.

The choice of the number of bands, from 4 to 128,
depends on the application. For hearing aid applica-
tions, 16 bands (500Hz each) or 32 bands (250 Hz
each) provide excellent frequency selectivity and low
delay (6 ms and 12 ms respectively). Non-uniform
channels are created from the uniform bands through
grouping. Hearing aid processing, to compensate for
the hearing loss, occurs in the frequency domain (i.e.
directly in the frequency bands).  Noise reduction
may be added to the hearing loss compensation di-
rectly in this channel structure.

Two extremely low power, small size noise reduction
systems are presented in this paper: One for hearing
aid applications and another for industrial applica-
tions. These algorithms have been tightly integrated
with an extremely low-power WOLA filterbank to
achieve extremely low system power consumption
and small size [2].

WOLA Coprocessor
The WOLA design provides a highly flexible time-
frequency representation amenable to sub-band
adaptive algorithms, sub-coding and other similar
applications [1], [2], [4]. The co-processor interfaces
to a DSP core via shared memory (RAM).

The co-processor has two main sub-blocks (Figure
1): the WOLA and the Input/Output processor (IOP).
Input samples are stored in a circular input FIFO.
Every R (input block size) samples a WOLA analysis
transformation is performed on L samples (L >> R).

In the noise reduction applications, the core is pri-
marily used to analyze the incoming spectrum and to
apply, via the shared RAM, appropriate attenuation
factors for each frequency band. Then, the WOLA
coprocessor performs a WOLA synthesis transfor-
mation and stores the results in the output FIFO. The
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IOP is responsible for interpolating outgoing samples
and decimating incoming samples.
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Figure 1: Overview of the co-processor’s environment

Spectral Subtraction Noise Reduction
Crucial to this algorithm is the generation of a noise
spectral estimate. During speech pauses, the noise
spectral estimate is updated from the input (since it
contains noise only) using long time averaging (about
1-2 sec). A voiced/unvoiced detector is used to de-
termine the gaps in speech. In addition to the modu-
lation technique described later, the narrow-band
structure allows other possibil ities including the de-
tection of the pitch fundamental frequency. This fine
spectrum structure is not visible in the coarser fre-
quency structure mentioned in the Low Delay Noise
Attenuation section. Once the noise estimate is
known, it is used to calculate a frequency domain
filter to suppress the background noise.

For stringent applications where a separation between
speech and noise is required, a filterbank with nar-
rower channels must be used. In these applications,
the WOLA filterbank is configured to provide 128
narrow bands (62.5Hz each). In the algorithm that
will be presented, these bands are grouped into 24
channels approximating Bark frequency spacing
(Figure 2).

Given knowledge of the noise spectrum in each
channel, enhanced speech is generated by a form of
subtraction between the incoming noisy spectrum and
the noise estimate. Since the noise and speech are
divided into narrow bands, it is possible to affect a
separation by preserving stronger speech components
while suppressing nearby (in frequency) noise.
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Figure 2: Band grouping approximating Bark frequency
spacing

The flexible WOLA structure is easily adapted to a
128 band filterbank (narrow bands of 62.5 Hz each).
In this mode, the WOLA performs FFT transforma-
tions on overlapping 256 point sine windowed input
sample sections with 50 percent overlap. After spec-
tral modification, the results are again weighted by a
sine window and overlap-added.

To reduce computation while remaining faithful to
the human auditory system, the number of bands was
reduced to 24 (approximately) Bark spaced frequency
channels (Figure 2). This brings the computation of
gains down from 128 to 24 for savings of about 5
times.

Algorithm
Since the clean speech is not known, the optimal at-
tenuation function, ( )ωH , must be estimated from

the corrupted speech. ( ) ( ) ( )ωωω NSX += .

The final update equation is given by:
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This formula is quite general and includes the Wiener
(minimum square error) solution if β and α are set to
1.0 and 2.0 respectively. Parameter α controls how
fast attenuation increases as SNR decreases. A value
of 1.0 was used. Parameter β is the so-called over-
subtraction factor. Residual noise and perceptual
quali ty can be increased by setting β to values greater
than 1.0.



Since the quantities used to calculate ( )ωH  are es-

timates, negative values can result from inaccuracies.
To avoid this problem, a spectral floor (minimum
value) for  ( )ωH  is used. A value of –30 dB was

used.

Complexity Reduction
For extremely low-power systems, the algorithmic
complexity must be minimized. Often, this minimi-
zation can be done with little or no perceptual degra-
dation. Already, one technique was mentioned, the
grouping of bands into Bark spaced channels. While
this procedure saves power, it actually reduces the
musical noise artifact common in these systems by
essentially averaging a number of frequency bands
together.

It is advantageous to recast the previous attenuation
equation into dB (assume that α is 1).
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The availabili ty of fast math libraries including loga-
rithmic and exponential functions enable quick con-
version to and from dB is simple. Aside from the
antilog required, this formula is much simpler when

( )ωX  and ( )ωN  are kept track of in dB. In

fact, ( ) ( )ωω dBdB NX − , is just the SNR at a par-

ticular frequency.

Time-Slicing
A considerable reduction in computation is achieved
by reducing the update rate for the noise attenuation
parameters. Time slicing operates over 4 time slots.
Eight frequency channels are computed at a time
during the first three; the last slot is reserved for the
voice activity detection algorithm.

Since only a selected number of channels are updated
every pass through the algorithm, overhead is created
because the algorithm must keep track of the partial
updates. This overhead can potentially erase the gains
made by time slicing. To reduce the overhead, pre-
calculated tables (the necessary start-up conditions)
are kept.

Voice Activity Detection
The incoming signal is assumed to be either noise
contaminated speech or noise alone. In order to accu-

rately estimate the noise spectrum, the desired signal
(speech) must be absent. Whenever noise alone is
detected, a slowly averaged noise spectrum is up-
dated. When speech is detected, the last updated
noise spectrum is used to calculate the attenuation
factors.

The voice activity detector is broadband and calcu-
lates two features:

1. Slowly decaying peak energy and

2. Minimum energy over 0.25 second intervals

In strongly modulated sections, indicating the pres-
ence of speech, the large energy excursions continu-
ally reset the peak energy to high values. The mini-
mum energy level remains at the lowest excursions
creating a wide gap between the two features. Con-
versely, in sections containing li ttle modulation, the
peak energy approaches the minimum energy.

To safeguard against false voicing detection, un-
voiced must be declared for a number of consecutive
frames – about one second. A counter accomplishes
this operation starting at maximum count and decre-
menting until zero is reached. When zero is reached,
an unvoiced detection is declared; otherwise, voicing
is declared if a voiced frame occurs before this time-
out operation. The counter is then reset back to
maximum count.

This is a relatively simple feature to implement.
Since power is at an extreme premium, it is necessary
to keep only the best features.

Low Delay Noise Attenuation
This type of noise reduction is very effective in en-
hancing the quali ty of the signal.  Since the channels
are relatively wide, a separation between speech and
noise is not possible; both speech and noise are at-
tenuated by the same amount, therefore, this tech-
nique is best thought of as a remapping of speech and
noise for the purposes of wearer comfort.

This noise attenuation algorithm uses two features to
identify and attenuate noise in speech.  Because this
algorithm is aimed at hearing aid users, the artifacts
and delay must be minimized while maximizing SNR
and preceived speech quali ty.

Modulation
Modulation of speech is the first feature used to
identify speech from noise.  This feature was success-
fully used by Graupe and Causey in their noise at-
tenuation algorithm [7].  Using modulation as a
measure for SNR relies on the fact that the addition
of stationary or nearly stationary noise to a speech



signal reduces the peak-to-peak modulation of the
combined signal. Figure 3 shows the fast RMS chan-
nel level for speech with no noise. Figure 4 shows
the fast RMS channel level for the same speech with
additive white noise. The lower levels of the speech
signal have been “ fill ed-in” , thereby reducing the
difference between the maximum and minimum lev-
els. As the SNR of the signal decreases, the differ-
ence between the maximum and minimum levels
decreases.  Using this method on bandlimited chan-
nels in the frequency domain, we arrive at Figure 6.
It is a modulogram of clean speech with bandpassed
additive white noise in channel 7 (2750Hz to
3250Hz).  Each channel has a bandwidth of 500Hz,
except for channel 1 and 16 which has a bandwidth
of 250Hz.

Figure 5 shows a block diagram of the modulation
detector.  The modulation of a signal is measured by
tracking the difference between the maximum and
minimum values over time.
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Figure 3: Fast RMS channel levels (τ=50 ms) for hint1a
sentence (“T he wife helped her husband. She’s drinking

from her own cup.” ) in quiet.

The maxima tracker is a peak detector with a first
order exponential decay.
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Figure 4: Fast RMS channel levels (τ=50 ms) for hint1a
sentence (“T he wife helped her husband. She’s drinking

from her own cup.” ) in noise.
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Figure 5: Modulation detector.

The minima tracker averages all local minimum val-
ues within 10ms windows in a 250ms time frame.
An outlier rejector removes local minimum values
that fall outside of

imalocalimalocalimalocal min2
1

minmin2 σµσ <<− ,

where imalocalminσ is the standard deviation of the

local minimum values within the 250ms time frame

and imalocalminµ is the mean local minimum value

within the 250ms time frame, from the minimum
tracker average.

This will track the noise level (instead of being bi-
ased by speech) while the outlier rejector ensures the
estimate is not biased by transient signals [6].

Spectral Flux
The second feature we use is the rate of change of the
power in each frequency channel.  We will refer to
this as the spectral flux [9]. Spectral flux is a rela-
tively simple measure and can be thought of as a ru-
dimentary voice detector.

The spectra flux is calculated as follows [8].  The
power of each channel within a 10ms window is av-
eraged.  The difference is then calculated as

])2[]1[8]1[8]2[(12
1 −−−++−+ npnpnpnp , where

]2[ +np  is the 2nd 10ms window after ][np .  This

difference is then averaged through a first order ex-
ponential formula.

Figure 6 shows the spectra flux for clean speech with
additive bandpassed white noise from 2750Hz to
3250Hz.

Attenuation Rule
The modulation estimate and spectral flux are com-
bined via a geometric mean and used as an input to
an attenuation rule.  Since decreasing modulation
means a higher noise level, the rule applies an at-
tenuation that is inversely proportional to modulation.
The table is designed to minimize the attenuation of
clean speech while presenting quickly increasing
attenuation for signals with less than 10 dB modula-
tion.



Figure 6: Modulogram and Spectral Flux of input signal

Results
The low delay noise attenuation algorithm was run on
clean speech.  There were no noticeable artifacts or
degradations on the signal.  The noise attenuation
algorithm was then run on speech with additive
bandpass stationary noise.  The output waveform
resulted in a substantial attenuation in the channel
with the noise (>25dB attenuation) with littl e to no
effect on other channels.  The noise attenuation algo-
rithm was then run on white noise, the white noise
was attenuated substantially (>35dB) within 2 sec-
onds.

The spectral subtraction routine was also run on clean
speech. Again, there were no noticeable degradations
perceivable. Wideband speech weighted noise was
then added to the input speech. The resulting speech
quali ty is quite good for SNR levels of  5dB or
higher. At lower SNR levels, the algorithm has diffi-

culty obtaining at accurate noise model resulting in a
number of artifacts in the reconstructed speech. Fur-
ther work is being pursued, borrowing the successful
detection methods from the low delay noise attenua-
tion algorithm, to build a voice activity detector ca-
pable of running at lower SNR levels.
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