THINK ON.

On-Board Charger (OBC) APM16

www.onsemi.com

APM Solutions for Automotive xEV

APM Performance benefits

[Thermal Performance]

Lower Rthjs of APM => Lower Tj => Lower Rdson => Higher Power Density => Compact Size

[Electrical Performance]

- Lower circuit resistance (i.e., double the number of wire bonds comparing with standard discrete package) allows customer to provide higher torque output
- Reduced stray inductances as a result of physical proximity of the devices
- Better dynamic and EMI performance
- High Isolation Voltage saving additional insulation
 layer

Highly optimized thermal performance ightarrow APM can reach Rthjs << 1 K/W

APM Performance benefits

[Thermal Performance]

Lower Rthjs of APM => Lower Tj => Lower Rdson => Higher Power Density => Compact Size

• Lower circuit resistance (i.e., double the number

[Electrical Performance]

- of wire bonds comparing with standard discrete package) allows customer to provide higher torque output
- Reduced stray inductances as a result of physical proximity of the devices
- Better dynamic and EMI performance
- High Isolation Voltage saving additional insulation
 layer

Highly optimized thermal performance \rightarrow APM can reach Rthjs << 1 K/W

APM Design benefits

Reduced system costs & less mechanical complexity & higher power density

- Smaller system, smaller housing
- More compact layout
- Thermistor, shunts, passive components and power interconnections inside of the module
- Higher current density
- Better utilization of MOSFET Die due optimized thermal path (~30%)
- Smaller PCB area possible
- Lower total resistance, high efficiency

- Fully tested and optimally matched power circuit.
- Minimize assembly points and defect rate.
- Reduced system failure rate at the end customer
- Reduced number of components Quality control cost reduction
- Simplified assembly
- Bus bar saves high current on PCB

Half the size of discrete solution APM16 vs. 4x TO247 !

Public Information

→ Lower SYSTEM LEVEL COST

- PCB, housing and system volume reduction.
- No high currents on PCB
- Integrated electrical isolation
- Simplified and smaller thermal interface
- Increased Yield and Productivity

HV OBC & DC/DC Modules

Features

- One package outline covers multiple circuit configurations
- Automotive qualified per AECQ101 and AQG324
- Ceramic substrate option AIN or AI203 : Low junction-sink thermal resistance
- Pb Free

Specifications								
Part number	Silicon	Voltage	Rating	Tj rating	Substrate	Config		
FAM65HR51DS2	SFIII	650V	$51 m\Omega$ max @25C	55C/150C	AI203	H-Bridge		
FAM65CR51DZ2	SFIII	650V	51mΩ max, @25C	-55C/150C	41000	PFC		
	Stealth	600V	1.24V@15A, 27ns@Tj=175C	-55C/175C	AI2U3			
FAM65R030DS1/2	Si	650V	1.2V,60ns and 30A @Tj=25C	-55C/175C	AI203	Bridge Rect.		

Automotive Module Based OBC Demo

Design Features

- AQG324 Qualified APM to reduce PCB space and size.
- 2CH Interleaved PFC for higher efficiency and power density.
- Full bridge LLC to boost efficiency by high bus voltage usage.
- Flyback topology to supply auxiliary power.

Circuit configuration

- Hardware PFC and LLC control for improved fault modes.
- Fully functional solution including input/output current/voltage sensing and CC/CV PWM control interface.

Control configuration

OBC Design Details Description

Component featured

Part number	Function
FAN9672Q	PFC controller
FAN7688SJX	LLC controller
NCV3843B	PWM controller
FAN3224TUMX-F085	Low-side gate driver
NCV890100PDR2G	Buck mode switching regulator
NCV51460SN33T1G	Precision voltage reference
NCV210SQT2G	Current sense amplifier
NCV2003SN2T1T	Precision operational amplifier
SC431AVSNT1G	Precision voltage reference
FODM8801C	Opto-coupler

Control features

PFC Controller FAN9672

- Continuous Conduction Mode with Average Current Mode Control
- Two-Channel Interleave Operation
- Programmable Operation Frequency Range: 18 kHz~40 kHz or 55 kHz~75 kHz
- Programmable PFC Output Voltage, UVLO, Soft-start
- Two Current-Limit Functions
- TriFault Detect[™] Protects Against Feedback Loop Failure

LLC Controller FAN7688

- Secondary Side PFM Controller for LLC Resonant Converter with Synchronous Rectifier Control
- Charge Current Control for Better Transient Response and Feedback Loop
 Design
- Adaptive Synchronous Rectification Control with Dual Edge Tracking
- Closed Loop Soft-Start for Monotonic Rising Output
- Wide Operating Frequency (39 kHz ~ 690 kHz)
- Green Functions to Improve Light-Load Efficiency
- Protection Functions: OCP, OVP, OTP, VCC-UVLO, overload, all with Auto-Restart
- Wide Operating Temperature Range -40°C to +125°C

PWM Controller NCV3843

- Trimmed Oscillator, Frequency Guaranteed at 250 kHz
- Current Mode Operation to 500 kHz
- Automatic Feed Forward Compensation
- Latching PWM for Cycle-By-Cycle Current Limiting
- Internally Trimmed Reference with Undervoltage Lockout
- High Current Totem Pole Output
- Low-startup/operating current, UVLO with Hysteresis

Why use APM module Solution?

Vs discrete solution	APM Module	Discrete Components	Remarks	
PCB Layout Design	√ Simple	Complex	By using integrated power module;	
Manufacturing Process	√ Simple	Complex	 Circuit design can be more compact Save the materials including device 	
Converter Size / Weight	$\sqrt{\text{Smaller}/\text{Lighter}}$	Larger / Heavier	housing, clip heat sinks, insulation materials and interconnections wires	
Noise Immunity (EMC)	√ Improved circuit pattern & Snubber	Weak (Complex PCB pattern)	 resulting in overall cost reduction. Based on the excellent high thermal performance junction to sink. Optimum 	
High voltage isolation	$\sqrt{\rm HV}$ isolation inside the module	Need additional isolation layer	cooling route can be designed which improve overall system efficiency than the system based on the discrete	
Thermal Resistance – junction to case	$\sqrt{\text{Lowest}}$	Higher		
Cooling Efficiency	√ Low	Complex cooling route design required		
Vs Other Power modules	APM Module	Case Module	Remarks	
Reliability	$\sqrt{\text{Highest}}$ (Thermal stress, Mechanical & Vibration)	Lower than APM	Transfer molded ON's APM module solution whose high reliability performance	
Converter Size / Weight	$\sqrt{\text{Smallest}/\text{Lighter}}$	Larger and Heavier than APM	can provide much lighter and compact solution than gel filled case module.	

