THINK ON.

www.onsemi.com

### 60W EVB(PD2.0/3.0/PPS) with FAN6081+FAN6390

#### **Travel Adaptor Power Supply**

Public Information



# USB-C/PD 60W (PD2.0/3.0/PPS) – Overall Features

#### Compact size of 68 x 50 x 20 [mm]

- Power density of 0.000882 [W/mm<sup>3</sup>]
- Power density of 0.882353 [W/cm<sup>3</sup>]
- Power density of 14.45926 [W/inch<sup>3</sup>]
- Less BOM
  - Two controllers only, one is at primary and the other is at secondary
  - No bulky additional circuit and simple transformer configuration
  - Total BOM is 87 components
- High efficiency with conventional flyback
  - 91.38% / 91.80% at 20V/3A, 115 $V_{AC}$  / 230 $V_{AC}$  respectively
  - 91.43% / 91.26% average eff. at 20V/3A, 115V<sub>AC</sub> / 230V<sub>AC</sub> respectively
- Lower temperature at maximum load
  - Primary MOSFET 90.4 degree Celsius
  - Transformer 91 degree Celsius
- Flexible FAN6390 solution



#### EVB Size: Length 68mm x Width 50mm x Height 20mm



# USB-C/PD 60W (PD2.0/3.0/PPS) - EVB Picture

PCB TOP VIEW



#### PCB BOTTOM VIEW



**Public Information** 

# USB-C/PD 60W (PD2.0/3.0/PPS) - Schematics



- For 5V PDO~20V PDO application, VDD Option 1 is enough.
- For 3.3V~16V PPS(5V APDO~15V APDO) application, VDD Option 1 is enough.
- For 3.3V~21V PPS(5V APDO~20V APDO) application, VDD Option 2 is must.



### **VBUS Impedance Detection(ONSEMI's patent)**

- Function enabled within the de-bounce time of 150ms between R<sub>D</sub> detection and load SW ON.
- Before detecting pollution and after detecting pollution on the BUS, bleeder be enabled to clean the remained voltage.
- Pollution impedance and threshold level
  - $2k\Omega$  is the maximum allowed resistance.
  - In order to avoid miss-triggering by noise, decided relatively higher voltage for threshold but PD spec recognizes 0.8V as a zero voltage so need to be less than 0.8V.
  - Since BLD pin is shared for BUS impedance detection, external bleeding resistance (~50Ω typ.) should be considered as a total resistance.





# **Efficiency Results on the EVB**

| VBUS=5.0V, IBUS=0.75A~3.0A, 15W |        |        |        |        |        |  |
|---------------------------------|--------|--------|--------|--------|--------|--|
|                                 | 0.75A  | 1.5A   | 2.25A  | 3.0A   | Avg.   |  |
| 115Vac                          | 89.18% | 90.43% | 90.48% | 90.38% | 90.12% |  |
| 230Vac                          | 84.80% | 88.49% | 89.33% | 89.52% | 88.03% |  |

| VBUS=9.0V, IBUS=0.75A~3.0A, 27W |        |        |        |        |        |
|---------------------------------|--------|--------|--------|--------|--------|
|                                 | 0.75A  | 1.5A   | 2.25A  | 3.0A   | Avg.   |
| 115Vac                          | 90.26% | 91.33% | 91.31% | 91.28% | 91.05% |
| 230Vac                          | 88.27% | 90.50% | 90.76% | 90.93% | 90.11% |

| VBUS=15V, IBUS=0.75A~3.0A, 45W |        |        |        |        |        |  |
|--------------------------------|--------|--------|--------|--------|--------|--|
|                                | 0.75A  | 1.5A   | 2.25A  | 3.0A   | Avg.   |  |
| 115Vac                         | 90.88% | 91.47% | 91.47% | 91.83% | 91.41% |  |
| 230Vac                         | 89.80% | 90.95% | 90.97% | 91.55% | 90.82% |  |

| VBUS=20V, IBUS=0.75A~3.0A, 60W |        |        |        |        |        |  |
|--------------------------------|--------|--------|--------|--------|--------|--|
|                                | 0.75A  | 1.5A   | 2.25A  | 3.0A   | Avg.   |  |
| 115Vac                         | 91.32% | 91.56% | 91.45% | 91.38% | 91.43% |  |
| 230Vac                         | 90.49% | 91.23% | 91.53% | 91.80% | 91.26% |  |



Public Information