2.5 V/3.3 V Differential 2:1 MUX to 4 LVPECL Fanout Buffer # **NB3L8533** ### Description The NB3L8533 is a low skew 1:4 LVPECL Clock fanout buffer designed explicitly for low output skew applications. The NB3L8533 features a multiplexed input which can be driven by either a differential or single-ended input to allow for the distribution of a lower speed clock along with the high speed system clock. The CLK_SEL pin will select the differential clock inputs, CLK and $\overline{\text{CLK}}$, when LOW (or left open and pulled LOW by the internal pull-down resistor). When CLK_SEL is HIGH, the Differential PCLK and $\overline{\text{PCLK}}$ inputs are selected. The common enable (CLK_EN) is synchronous so that the outputs will only be enabled/disabled when they are already in the LOW state. This avoids any chance of generating a runt clock pulse when the device is enabled/disabled as can happen with an asynchronous control. The internal flip flop is clocked on the falling edge of the input clock, therefore, all associated specification limits are referenced to the negative edge of the clock input. ### **Features** - 650 MHz Maximum Clock Output Frequency - CLK/CLK can Accept LVPECL, LVDS, HCSL, STTL and HSTL - PCLK/PCLK can Accept LVPECL, LVDS, CML and SSTL - Four Differential LVPECL Clock Outputs - 1.5 ns Maximum Propagation Delay - Operating Range: $V_{CC} = 2.375 \text{ V}$ to 3.630 V - LVCMOS Compatible Control Inputs - Selectable Differential Clock Inputs - Synchronous Clock Enable - 30 ps Max. Skew Between Outputs - −40°C to +85°C Ambient Operating Temperature Range 1 - TSSOP-20 Package - These are Pb-Free Devices ### **Applications** - Computing and Telecom - Routers, Servers and Switches - Backplanes ### **MARKING DIAGRAM** A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package Figure 1. Simplified Logic Diagram of NB3L8533 ### ORDERING INFORMATION See detailed ordering and shipping information on page 8 of this data sheet. Figure 2. Pinout Diagram (Top View) **Table 1. FUNCTIONS** | Inputs | | | Outputs | | | | |--------|-------------------------------|----------------------|-----------------|------|----------------|--| | CLK_EN | CLK_EN CLK_SEL Input Function | | Output Function | Qx | Qx | | | 0 | 0 | CLK input selected | Disabled | LOW | HIGH | | | 0 | 1 | PCLK Inputs Selected | Disabled | LOW | HIGH | | | 1 | 0 | CLK input selected | Enabled | CLK | Invert of CLK | | | 1 | 1 | PCLK Inputs Selected | Enabled | PCLK | Invert of PCLK | | ^{1.} After CLK_EN switches, the clock outputs are disabled or enabled following a rising and falling input clock edge as show in Figure 3. ## **Table 2. PIN DESCRIPTION** | Pin Number | Name | I/O | Open
Default | Description | |------------|----------------|-----------------------|-----------------|--| | 1 | VEE | Power | | Negative (Ground) Power Supply pin must be externally connected to power supply to guarantee proper operation. | | 2 | CLK_EN | LVCMOS/LVTTL
Input | Pull-up | Synchronized Clock Enable when HIGH. When LOW, outputs are disabled (Qx HIGH, Qx LOW) | | 3 | CLK_SEL | LVCMOS/LVTTL
Input | Pull-down | Clock Input Select (HIGH selects PCLK, LOW selects CLK input) | | 4 | CLK | Input | Pull-down | Non-inverted Differential Clock Input. Float open when unused. | | 5 | CLK | Input | Pull-up | Inverted Differential Clock Input. Float open when unused. | | 6 | PCLK | Input | Pull-down | Non-inverted Differential Clock Input. Float open when unused. | | 7 | PCLK | Input | Pull-up | Inverted Differential Clock Input. Float open when unused. | | 8 | NC | | | No Connect | | 9 | NC | | | No Connect | | 10 | VCC | Power | | Positive Power Supply pins must be externally connected to power supply to guarantee proper operation. | | 11 | Q 3 | LVPECL Output | | Complement Differential Output | | 12 | Q3 | LVPECL Output | | True Differential Output | | 13 | VCC | Power | | Positive Power Supply pins must be externally connected to power supply to guarantee proper operation. | | 14 | Q2 | LVPECL Output | | Complement Differential Output | | 15 | Q2 | LVPECL Output | | True Differential Output | | 16 | Q1 | LVPECL Output | | Complement Differential Output | | 17 | Q1 | LVPECL Output | | True Differential Output | | 18 | VCC | Power | | Positive Power Supply pins must be externally connected to power supply to guarantee proper operation. | | 19 | Q0 | LVPECL Output | | Complement Differential Output | | 20 | Q0 | LVPECL Output | | True Differential Output | Table 3. ATTRIBUTES (Note 2) | Characteristics | Value | |--|----------------------| | ESD Protection Human Body Model
Machine Model | > 2 kV
> 200 V | | R _{PU} – Pull–up Resistor | 50 kΩ | | R _{PD} – Pull–down Resistor | 50 kΩ | | Moisture Sensitivity (Note 2) TSSOP-20 | Level 1 | | Flammability Rating Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | | Transistor Count | 289 | | Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test | • | ^{2.} For additional information, see Application Note AND8003/D. ### **Table 4. MAXIMUM RATINGS** | Symbol | Parameter | Condition 1 | Condition 2 | Rating | Unit | |-------------------|--|-----------------------|----------------------|-------------------------------|----------| | V _{CC} | Positive Power Supply Voltage | V _{EE} = 0 V | | 4.6 | V | | VI | Input Voltage | V _{EE} = 0 V | $V_{I} \leq V_{CC}$ | -0.5 to V _{CC} + 0.5 | V | | l _{out} | Output Current | Continuous
Surge | | 50
100 | mA
mA | | T _A | Operating Temperature Range | | | -40 to +85 | °C | | T _{stg} | Storage Temperature Range | | | -65 to +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance (Junction-to-Ambient) | 0 lfpm
500 lfpm | TSSOP-20
TSSOP-20 | 140
50 | °C/W | | $\theta_{\sf JC}$ | Thermal Resistance (Junction-to-Case) | Standard Board | TSSOP-20 | 23 to 41 | °C/W | | T _{sol} | Wave Solder | | | 265 | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Table 5. DC CHARACTERISTICS V_{CC} = 2.375 V to 3.630 V; V_{EE} = 0 V; T_A = -40°C to +85°C (Note 3) | Symbol | Characteristic | | Min | Тур | Max | Unit | |--------------------|---|-------------|----------------------|-----|--|------| | POWER SI | JPPLY | | • | | | | | V _{CC} | Power Supply Voltage | | 2.375 | | 3.630 | V | | I _{EE} | Power Supply Current (Outputs Open) | | | | 40 | mA | | LVPECL O | UTPUTS (Note 4) | | • | | • | | | V _{OH} | Output HIGH Voltage | | V _{CC} -1.4 | | V _{CC} -0.9 | V | | V _{OL} | Output LOW Voltage | | V _{CC} -2.0 | | V _{CC} -1.7 | V | | V _{SWING} | Output Voltage Swing, Peak-to-Peak | | 0.6 | | 1.0 | V | | DIFFEREN | TIAL INPUTS DRIVEN DIFFERENTIALLY (see Figure | 5) (Note 7) | • | | • | | | V_{IHD} | Differential Input HIGH Voltage
PCLK | CLK | 0.5
1.5 | | V _{CC} -0.85 | V | | V _{ILD} | Differential Input LOW Voltage CLK
PCLK | | 0
0.5 | | V _{IHD} -0.15
V _{IHD} -0.30 | V | | V _{CMR} | Common Mode Input Voltage; (Note 8) PCLK/PCLKb | CLK/CLKb | 0.5
1.5 | | V _{CC} -0.85 | V | | V _{ID} | Differential Input Voltage (V _{IHD} -V _{ILD})
PCLK/PCLKb | CLK/CLKb | 0.15
0.3 | | 1.3
1.0 | V | | I _{IH} | Input HIGH Current V _{IN} = V _{CC} = 3.630 V
CLKb, PCLKb | CLK, PCLK | | | 150
5 | μΑ | | I _{IL} | Input LOW Current V _{IN} = 0 V, V _{CC} = 3.630 V
CLKb, PCLKb | CLK, PCLK | -5
-150 | | | μΑ | | LVCMOS/L | VTTL INPUTS (CLK_EN, CLK_SEL) | | • | | • | | | V _{IH} | Input HIGH Voltage | | 2.0 | | V _{CC} +0.3 | V | | V _{IL} | Input LOW Voltage | | -0.3 | | 0.8 | V | | I _{IH} | Input HIGH Current V _{IN} = V _{CC} = 3.630 V
CLK_SEL | CLK_EN | | | 5
150 | μΑ | | I _{IL} | Input Low Current V _{IN} = 0 V, V _{CC} = 3.630 V
CLK_SEL | CLK_EN | -150
-5 | | | μΑ | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. - 3. Input and Output parameters vary 1:1 with V_{CC} . 4. LVPECL outputs loaded with 50 Ω to V_{CC} 2 V for proper operation. 5. V_{IH} , V_{IL} , V_{th} and V_{ISE} parameters must be complied with simultaneously. 6. V_{th} is applied to the complementary input when operating in single–ended mode. 7. V_{IHD} , V_{ILD} , V_{ID} and V_{CMR} parameters must be complied with simultaneously. 8. The common mode voltage is defined as V_{IH} . Table 6. AC CHARACTERISTICS, $V_{CC} = 2.375 \text{ V to } 3.630 \text{ V}$, $T_A = -40 ^{\circ}\text{C}$ to $+85 ^{\circ}\text{C}$ (Note 9) | Symbol | Characteristic | | | Min | Тур | Max | Unit | |--|--|--------------------|------------------------------------|-----|--|------|------------| | f_{MAX} | Maximum Input Clock Frequency: V _{OUTpp} ≥ 300 mV | | | | | 650 | MHz | | Φ_{N} | Phase Noise, f _C = 156.25 MHz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 20 MHz | 100 Hz | Offset from Carrier | | -124.4
-136.1
-144.2
-153.3
-156.2
-156.2
-156.4 | | dBc/
Hz | | t _{PLH} ,
t _{PHL} | Propagation Delay to Differential Outputs, @ 50 MHz (Figures 6 and 7) (V_{CC} = 3.3 V) | Note 10
Note 11 | CLK/CLK to Q/Q
PCLK/PCLK to Q/Q | 1.0 | | 1.55 | ns | | t∫⊕N | Additive Phase Jitter, RMS; f _C = 156.25 MHz,
Integration Range: 12 kHz – 20 MHz | | | | 0.05 | | ps | | tsk(o) | Output-to-output skew; (Note 12) | | | | | 30 | ps | | tsk (pp) | Part-to-Part Skew; (Note 13) | | | | | 150 | ps | | V_{INpp} | Input Voltage Swing/Sensitivity (Differential Configuration) (Note 15) | | | 150 | | 1300 | mV | | t _r /t _f | Output rise and fall times, 20% to 80%, @ 50 MHz | | $Q_n, \overline{Q_n}$ | 250 | | 600 | ps | | ODC | Output Clock Duty Cycle | | | 47 | | 53 | % | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. All parameters measured at f_{MAX} unless noted otherwise. The cycle–to–cycle jitter on the input will equal the jitter on the output. The part does not add jitter - 9. Measured using a $V_{INPPmin}$ source, Reference Duty Cycle = 50% duty cycle clock source. All output loading with external 50 Ω to V_{CC} 2 V_{CC} - 10. Measured from the differential input crossing point to the differential output crossing point. - 11. Measured from V_{CC} /2 input crossing point to the differential output crossing point. - 12. Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential cross - 13. Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points. - 14. Output voltage swing is a single-ended measurement operating in differential mode. - 15. Input voltage swing is a single-ended measurement operating in differential mode. Figure 3. Typical Phase Noise Plot at f_{carrier} = 156.25 MHz at an Operating Voltage of 3.3 V, Room Temperature The above phase noise data was captured using Agilent E5052A/B. The data displays the input phase noise and output phase noise used to calculate the additive phase jitter at a specified integration range. The RMS Phase Jitter contributed by the device (integrated between 12 kHz and 20 MHz) is 51.76 fs. The additive phase jitter performance of the fanout buffer is highly dependent on the phase noise of the input source. To obtain the most accurate additive phase noise measurement, it is vital that the source phase noise be notably lower than that of the DUT. If the phase noise of the source is greater than the device under test output, the source noise will dominate the additive phase jitter calculation and lead to an artificially low result for the additive phase noise measurement within the integration range. RMS additive jitter = $$\sqrt{\text{RMS phase jitter of output}^2 - \text{RMS phase jitter of input}^2}$$ $51.76 \text{ fs} = \sqrt{100.24 \text{ fs}^2 - 85.84 \text{ fs}^2}$ Figure 4. VCMR Diagram Figure 5. Differential Inputs Driven Differentially Figure 6. AC Reference Measurement Figure 7. CLK_SEL to Qx Timing Diagram Figure 8. Differential Input Driven Single-ended # Differential Clock Input to Accept Single-ended Input Figure 8 shows how the CLK input can be driven by a single–ended Clock signal. C1 is connected to the V_{ref} node as a bypass capacitor. Locate these components close the device pins. R1 and R2 must be adjusted to position V_{ref} to the center of the input swing on CLK. Figure 9. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.) ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |---------------|-----------------------|-----------------------| | NB3L8533DTG | TSSOP-20
(Pb-Free) | 75 Units / Rail | | NB3L8533DTR2G | TSSOP-20
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. # TSSOP-20 WB CASE 948E ISSUE D **DATE 17 FEB 2016** - 7.06 ### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. - 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. - FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K - (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. - TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE - DETERMINED AT DATUM PLANE -W- | | MILLIN | IETERS | INC | HES | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 6.40 | 6.60 | 0.252 | 0.260 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | С | | 1.20 | | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 | BSC | 0.026 BSC | | | | Н | 0.27 | 0.37 | 0.011 | 0.015 | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | L | 6.40 | | 0.252 BSC | | | | М | ٥° | gο | ٥° | g٥ | | ### **GENERIC SOLDERING FOOTPRINT MARKING DIAGRAM*** = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. | DOCUMENT NUMBER: | 98ASH70169A | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. | | | |------------------|-------------|---|-------------|--| | DESCRIPTION: | TSSOP-20 WB | | PAGE 1 OF 1 | | DIMENSIONS: MILLIMETERS 0.65 ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. 0.36 16X 1.26 onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales